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Abstract
The volume under the receiver operating characteristic surface (VUS) is useful for
measuring the overall accuracy of a diagnostic test when the possible disease status
belongs to one of three ordered categories. In medical studies, the VUS of a new test
is typically estimated through a sample of measurements obtained by some suitable
sample of patients. However, in many cases, only a subset of such patients has the
true disease status assessed by a gold standard test. In this paper, for a continuous-
scale diagnostic test, we propose four estimators of the VUS which accommodate
for nonignorable missingness of the disease status. The estimators are based on a
parametric model which jointly describes both the disease and the verification process.
Identifiability of the model is discussed. Consistency and asymptotic normality of
the proposed estimators are shown, and variance estimation is discussed. The finite-
sample behavior is investigated by means of simulation experiments. An illustration
is provided.
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1 Introduction

For an ordinal three-category classification problem, the assessment of the perfor-
mance of a diagnostic test is achieved by the analysis of the receiver operating
characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic
outcomes. The volume under the ROC surface (VUS) is a summary index, usually
employed for measuring the overall diagnostic accuracy of the test. Under correct
ordering, values of VUS vary from 1/6, suggesting the test is no better than chance
alone, to 1, which implies a perfect test, i.e. a test that perfectly discriminates among
the three categories. The theoretical construction of the ROC surface and VUS was
introduced for the first time by Scurfield (1996).

In medical studies, the evaluation of the discriminatory ability of a diagnostic test
is typically obtained by making inference about its ROC surface and VUS, based on
data from some suitable sample of patients (or units). When the disease status of each
patient can be exactly assessed by means of a gold standard (GS) test, a set of methods
exist to estimate the ROC surface and VUS of the test in evaluation. See Nakas and
Yiannoutsos (2004),Xiong et al. (2006), Li andZhou (2009) andKang andTian (2013),
among others. In practice, however, disease status verification via GS test could be
unavailable for all units in the sample, due to the expensiveness and/or invasiveness
of the GS test. Thus, often, only a subset of patients undergoes disease verification. In
such situations, the implementation of the methods discussed in the above mentioned
papers could only be performed on the verified subjects, typically yielding biased
estimates of ROC surface and VUS. This bias is known as verification bias.

In order to correct for verification bias, the researchers often assume that the selec-
tion for disease verification does not depend on the disease status, given the test results
and other observed covariates, i.e., they assume that the true disease status, when
missing, is missing at random (MAR, Little and Rubin 2002). Under this assump-
tion, there exist few methods to get bias-corrected inference in ROC surface analysis.
Chi and Zhou (2008) proposed a nonparametric likelihood-based approach to obtain
bias-corrected estimators for ROC surface and VUS of an ordinal diagnostic test. In
case of continuous diagnostic tests, To Duc et al. (2016) discussed several solutions
based on imputation and re-weighting methods, and proposed four verification bias-
corrected estimators of the ROC surface and VUS: full imputation (FI), mean score
imputation (MSI), inverse probability weighting (IPW) and semi-parametric efficient
(SPE) estimators.

However, in some studies the decision to send a subject to verification may be
directly basedon the presumed subject’s disease status, or,more generally, the selection
mechanism may depend on some unobserved covariates related to disease; in these
cases, the MAR assumption does not hold and the missing data mechanism is called
nonignorable (NI).

For two-class problems, methods to deal with NI verification bias have been
developed, for instance, in Baker (1995), Zhou and Rodenberg (1998), Zhou and
Castelluccio (2003), Zhou and Castelluccio (2004), Rotnitzky et al. (2006), Fluss
et al. (2009), Fluss et al. (2012) and Liu and Zhou (2010). However, the issue of cor-
recting for NI verification bias in ROC surface analysis is very scarcely considered in
the statistical literature. To the best of our knowledge, only Zhang and Alonzo (2018)
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gave a contribution in this direction. In detail, the Authors: (i) extended to the VUS the
doubly robust estimator for the area under the ROC curve of Rotnitzky et al. (2006);
(ii) proposed an IPW estimator of the VUS again based on the model of Rotnitzky
et al. (2006); and (iii) considered an extension of the model in Liu and Zhou (2010)
to obtain a pseudo doubly robust (PDR) estimator of the VUS.

However, on the one hand, techniques discussed by Zhang and Alonzo (2018)
appear to lackgenerality. Indeed,with reference to the verificationprocess, in proposals
(i) and (ii) the planned adjustment for selection to verification is assumed to be user-
specified, i.e., fixed and known in practice; moreover, in all proposals, i.e., (i)–(iii),
the disease variable is treated in an unnatural way as a numerical variable. On the
other hand, asymptotic properties of the proposed estimators are not theoretically
investigated, nor a proof of identifiability for the model is provided in case (iii), in
which the adjustment for selection to verification is assumed to be unknown.

In this work, we try to overcome limitations of current proposals in developing
bias-corrected methods for continuous diagnostic tests with three-class disease status,
under a NI missing data mechanism. In particular, we adopt parametric regression
models for the disease and the verification processes, properly extending the selection
model of Liu and Zhou (2010) to match the case of three-class disease status. Then,
we use likelihood-based estimators of model parameters to derive four estimators (FI,
MSI, IPW, PDR) of the VUS. Within this approach, we prove identifiability of the
model as well as consistency and asymptotic normality of the proposed estimators.
Estimation of their variance is also discussed.

The rest of the paper is organized as follows. In Sect. 2, we set the working model
and discuss its identifiability. In Sect. 3 we present our proposed bias-corrected VUS
estimators, along with theoretical results about consistency and asymptotic normality.
The results of a simulation study are presented in Sect. 4 and an illustration based on
data from theAlzheimer’sDiseaseNeuroimaging Initiative is provided in Sect. 5. Con-
cluding remarks are left to Sect. 6. Technical details and a discussion about variance
estimation can be found in the appendices.

2 Model for NI missing datamechanism

2.1 Background

Suppose we need to evaluate the predictive ability of a new continuous diagnostic test
in a context where the disease status of a patient can be described by three ordered
categories, “non-diseased”, “intermediate” and “diseased”, say. Consider a sample of
n subjects and let T , D and A denote the test result, the disease status and a vector
of covariates for each subject, respectively. In this framework, D can be modeled as
a trinomial random vector D = (D1, D2, D3)

�, such that Dk is a Bernoulli random
variable having mean θk = Pr(Dk = 1) where θ1 + θ2 + θ3 = 1. Hence, θk represents
the probability that a generic subject, classified according to its disease status, belong
to the class k. We are interested in estimating the VUS of the test T , say μ, which is
defined as (Nakas and Yiannoutsos 2004)
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μ = Pr (Ti < T� < Tr |D1i = 1, D2� = 1, D3r = 1)

+ 1

2
Pr (Ti < T� = Tr |D1i = 1, D2� = 1, D3r = 1)

+ 1

2
Pr (Ti = T� < Tr |D1i = 1, D2� = 1, D3r = 1)

+ 1

6
Pr (Ti = T� = Tr |D1i = 1, D2� = 1, D3r = 1)

or, equivalently,

μ = E (D1i D2�D3r Ii�r )

E (D1i D2�D3r )
, (1)

where the indices i , �, r refer to three different subjects, Ii�r = I(Ti < T� < Tr ) +
1
2 I(Ti < T� = Tr ) + 1

2 I(Ti = T� < Tr ) + 1
6 I(Ti = T� = Tr ) and I(·) is the indicator

function.
When the disease status D is available for all subjects, a natural nonparametric

estimator of μ is given by

μ̂NP =
∑n

i=1
∑n

�=1,� �=i
∑n

r=1
r �=�,r �=i

Ii�r D1i D2� D3r

∑n
i=1

∑n
�=1,� �=i

∑n
r=1

r �=�,r �=i
D1i D2� D3r

. (2)

However, in many situations not all subjects undergo the verification process, and
hence, the disease statusD is missing in a subset of patients in the study. Let Vi be the
verification status for the i th subject: Vi = 1 ifDi is observed and Vi = 0 otherwise.
We define the observed data as the set {Oi = (D�

i , Vi , Ti , A�
i )�, i = 1, . . . , n}.

When the true disease status is subject to NI missingness, estimators working under
the MAR assumption cannot be applied tout court. Our goal is to adjust FI, MSI,
IPW and SPE estimators discussed in To Duc et al. (2016) to the framework of NI
missingness.

2.2 Model settings

To dealwithNImissing datamechanism, inwhat followswe extend parametricmodels
adopted in Liu and Zhou (2010) for the two-class problem to the three-class case.More
precisely, with three disease categories, we fix the model for the verification process
as follows

π = Pr(V = 1|D1, D2, T , A) = exp {h(T , A; τπ ) + λ1D1 + λ2D2}
1 + exp {h(T , A; τπ ) + λ1D1 + λ2D2} , (3)

where D1 and D2 are defined in the previous section, h(T , A; τπ ) is, in general, an
arbitrary working function, and τπ is a set of parameters. Here, λ = (λ1, λ2)

� is the
non-ignorable parameter: the missing data mechanism is MAR if λ1 = λ2 = 0; NI,
otherwise. As for the disease model, we employ the multinomial logistic regression
for the whole sample, i.e.,
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ρk = Pr(Dk = 1|T , A) = exp
{

f (T , A; τρk )
}

1 + exp
{

f (T , A; τρ1)
}+ exp

{
f (T , A; τρ2)

} , (4)

where f (T , A; τρk ) is an arbitrary working function, and τρk is a set of parameters,
for k = 1, 2. The parameters λ, τπ , τρ , with τρ = (τ�

ρ1
, τ�

ρ2
)�, can be estimated

jointly by using a likelihood-based approach.
It is worth noting that, under (3), an application of Bayes’ rule gives that

Pr(D1 = 1|V = 1, T , A)

Pr(D1 = 1|V = 0, T , A)
= Pr(V = 0|T , A)

Pr(V = 1|T , A)
exp {h(T , A; τπ ) + λ1} ,

Pr(D2 = 1|V = 1, T , A)

Pr(D2 = 1|V = 0, T , A)
= Pr(V = 0|T , A)

Pr(V = 1|T , A)
exp {h(T , A; τπ ) + λ2} ,

Pr(D3 = 1|V = 1, T , A)

Pr(D3 = 1|V = 0, T , A)
= Pr(V = 0|T , A)

Pr(V = 1|T , A)
exp {h(T , A; τπ )} .

Therefore,

Pr(D1 = 1|V = 1, T , A)

Pr(D1 = 1|V = 0, T , A)

/
Pr(D3 = 1|V = 1, T , A)

Pr(D3 = 1|V = 0, T , A)
= exp(λ1), (5)

Pr(D2 = 1|V = 1, T , A)

Pr(D2 = 1|V = 0, T , A)

/
Pr(D3 = 1|V = 1, T , A)

Pr(D3 = 1|V = 0, T , A)
= exp(λ2), (6)

so that, according to (5) and (6), λ1 and λ2 can also be interpreted as log-odds ratios of
belonging to class 1 (instead of class 3) and to class 2 (instead of class 3), respectively,
for a verified subject compared to an unverified subject with the same test result and
covariates.

2.3 Parameter estimation

As in Liu and Zhou (2010), in our model, for simplicity, we take h(T , A; τπ ) = τπ1 +
τπ2T + A�τπ3 and f (T , A; τρk ) = τρ1k + τρ2k T + A�τρ3k , which is a natural choice
in practice. For fixed T and A, the observed distribution is fully determined by the three
probabilities Pr(D1 = 1, D2 = 0, V = 1|T , A), Pr(D1 = 0, D2 = 1, V = 1|T , A)

and Pr(D1 = 0, D2 = 0, V = 1|T , A). It is easy to show that

Pr(D1 = 1, D2 = 0, V = 1|T , A)

= Pr(D1 = 1, D2 = 0|T , A)Pr(V = 1|D1 = 1, D2 = 0, T , A)

= Pr(D1 = 1|T , A)Pr(V = 1|D1 = 1, D2 = 0, T , A)

= ρ1π10.

Similarly, we have that

Pr(D1 = 0, D2 = 1, V = 1|T , A) = ρ2π01,

Pr(D1 = 0, D2 = 0, V = 1|T , A) = (1 − ρ1 − ρ2)π00 = ρ3π00,
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with π01 = Pr(V = 1|D1 = 0, D2 = 1, T , A), π00 = Pr(V = 1|D1 = 0, D2 =
0, T , A) and ρ3 = 1 − ρ1 − ρ2. Then,

Pr(V = 1|T , A) = ρ1π10 + ρ2π01 + ρ3π00,

and Pr(V = 0|T , A) = 1−Pr(V = 1|T , A) = 1−ρ1π10+ρ2π01+ρ3π00. It follows
that the log-likelihood function can be written as

log L(λ, τπ , τρ)

=
n∑

i=1

{

D1i Vi log(ρ1iπ10i ) + D2i Vi log(ρ2iπ01i ) + D3i Vi log(ρ3iπ00i )

+ (1 − Vi ) log(1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i )

}

. (7)

The estimates λ̂, τ̂π , and τ̂ρ can be obtained by maximizing log L(λ, τπ , τρ) or by
solving the score equations

0 =
n∑

i=1

{

D1i Vi (1 − π10i ) − (1 − Vi )ρ1iπ10i (1 − π10i )

1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i

}

,

0 =
n∑

i=1

{

D2i Vi (1 − π01i ) − (1 − Vi )ρ2iπ01i (1 − π01i )

1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i

}

,

0 =
n∑

i=1

U i

{

D1i Vi (1 − π10i ) + D2i Vi (1 − π01i ) + D3i Vi (1 − π00i )

− (1 − Vi )
ρ1iπ10i (1 − π10i ) + ρ2iπ01i (1 − π01i ) + ρ3iπ00i (1 − π00i )

1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i

}

,

0 =
n∑

i=1

U i

{

Vi (D1i − ρ1i )

− (1 − Vi )
(π10i − π00i )ρ1i (1 − ρ1i ) − (π01i − π00i )ρ1iρ2i

1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i

}

,

0 =
n∑

i=1

U i

{

Vi (D2i − ρ2i )

− (1 − Vi )
(π01i − π00i )ρ2i (1 − ρ2i ) − (π10i − π00i )ρ1iρ2i

1 − ρ1iπ10i − ρ2iπ01i − ρ3iπ00i

}

,

where U i = (1, Ti , A�
i )�. The above equations are obtained by using the following

results: ∂
∂λ1

π10i = π10i (1 − π10i ), ∂
∂λ2

π01i = π01i (1 − π01i ), ∂
∂τ�

π
πd1d2i = U i (1 −

πd1d2i )πd1d2i (here (d1, d2) is a pair in the set {(1, 0), (0, 1), (0, 0)}), and
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∂

∂τ�
ρ1

ρ1i = U iρ1i (1 − ρ1i ); ∂

∂τ�
ρ2

ρ1i = −U iρ1iρ2i ;
∂

∂τ�
ρ2

ρ2i = U iρ2i (1 − ρ2i ); ∂

∂τ�
ρ1

ρ2i = −U iρ1iρ2i .

2.4 Identifiability

In this section, we verify that the working model based on (3), with h(T , A; τπ )

= τπ1 + τπ2T + A�τπ3 , and (4), with f (T , A; τρk ) = τρ1k + τρ2k T + A�τρ3k , is
identifiable. Since the log-likelihood (7) is fully determined by the three probabilities
Pr(D1 = 1, D2 = 0, V = 1|T , A), Pr(D1 = 0, D2 = 1, V = 1|T , A) and Pr(D1 =
0, D2 = 0, V = 1|T , A), we have to show that such probabilities are uniquely
determined by the parameters for all possible T and A. For the sake of simplicity,
in the remainder of this section the auxiliary covariate A is omitted (actually, we can
always view A as fixed while varying T ).

Let ξ = (λ1, λ2, τπ1 , τπ2 , τρ11 , τρ21 , τρ12 , τρ22)
� be the set of parameters. For given

T = t , we can write

log(ρ1π10) = (τρ11 + τρ21 t) − log
{
1 + exp(τρ11 + τρ21 t) + exp(τρ12 + τρ22 t)

}

+ (τπ1 + τπ2 t) + λ1 − log
{
1 + exp(τπ1 + τπ2 t) exp(λ1)

}
,

log(ρ2π01) = (τρ12 + τρ22 t) − log
{
1 + exp(τρ11 + τρ21 t) + exp(τρ12 + τρ22 t)

}

+ (τπ1 + τπ2 t) + λ2 − log
{
1 + exp(τπ1 + τπ2 t) exp(λ2)

}
,

log(ρ3π00) = − log
{
1 + exp(τρ11 + τρ21 t) + exp(τρ12 + τρ22 t)

}+ (τπ1 + τπ2 t)

− log
{
1 + exp(τπ1 + τπ2 t)

}
.

Let x(t) = τπ1 + τπ2 t , y(t) = τρ11 + τρ21 t and z(t) = τρ12 + τρ22 t , for each t ∈ R.
The above expressions, which refer to the quantities characterizing the log-likelihood
function (7), can be rewritten as

log(ρ3π00) = − log {1 + exp(y(t)) + exp(z(t))} + x(t) − log {1 + exp(x(t))} ,

log(ρ1π10) = y(t) − log {1 + exp(y(t)) + exp(z(t))} + x(t) + λ1

− log {1 + exp(x(t)) exp(λ1)}
= log(ρ3π00) + log {1 + exp(x(t))} + y(t) + λ1

− log {1 + exp(x(t)) exp(λ1)}
= log(ρ3π00) + y(t) + log {1 + exp(x(t))}

− log {exp(−λ1) + exp(x(t))}
= log(ρ3π00) + y(t) + log

{
1 + exp(x(t))

exp(−λ1) + exp(x(t))

}

,

log(ρ2π01) = z(t) − log {1 + exp(y(t)) + exp(z(t))} + x(t) + λ2

− log {1 + exp(x(t)) exp(λ2)}
= log(ρ3π00) + z(t) + log

{
1 + exp(x(t))

exp(−λ2) + exp(x(t))

}

.
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Now, assume that there are two distinct points ξ and ξ∗ (ξ �= ξ∗) in the parameter
space, such that the following equations (with obvious notation) hold:

ρ1π10 = ρ∗
1π

∗
10, (8)

ρ2π01 = ρ∗
2π

∗
01, (9)

ρ3π00 = ρ∗
3π

∗
00, (10)

for all t ∈ R. By using (10), the Eqs. (8) and (9) are equivalent to

y(t) − y∗(t)

= log

{
1 + exp(x∗(t))

exp(−λ∗
1) + exp(x∗(t))

}

− log

{
1 + exp(x(t))

exp(−λ1) + exp(x(t))

}

, (11)

z(t) − z∗(t)

= log

{
1 + exp(x∗(t))

exp(−λ∗
2) + exp(x∗(t))

}

− log

{
1 + exp(x(t))

exp(−λ2) + exp(x(t))

}

, (12)

respectively. In (11) and (12) the left hand sides are straight lines. Thus, in order to
(11) and (12) hold for all t , the right hand sides must be constants. If these constants
were 0 (because λ1 = λ∗

1 = λ2 = λ∗
2 = 0), then (10) would no longer hold for

ξ �= ξ∗ and all t . Alternatively, the right hand sides of (11) and (12) are non-zero
constants if τπ2 = τ ∗

π2
= 0. Then, as a consequence, (10) still is valid, for ξ �= ξ∗

and all t , eventually if τρ21 = τ ∗
ρ21

= 0 and τρ22 = τ ∗
ρ22

= 0. This allows us to state
that: if Pr(Dk |T ) �= Pr(Dk), with k = 1, 2, then the considered model (with the
particular choice for the functions h and f ) is identifiable, i.e., the joint probabilities
Pr(D1 = 1, D2 = 0, V = 1|T = t), Pr(D1 = 0, D2 = 1, V = 1|T = t) and
Pr(D1 = 0, D2 = 0, V = 1|T = t) are determined by a unique set of parameters.
Of course, this claim can be easily extended to handle the presence of a covariate
vector, A.

3 The proposal

3.1 VUS estimators

Let ρk(v) = Pr(Dk = 1|V = v, T , A), for k = 1, 2, 3 and v = 0, 1. It is easy to see,
for instance, that

ρ1(v) = Pr(V = v, D1 = 1|D2 = 0, T , A)

Pr(V = v|T , A)

= Pr(V = v|D1 = 1, D2 = 0, T , A)Pr(D1 = 1|T , A)

Pr(V = v|T , A)
.
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Hence, we can get, in particular,

ρ1(0) = (1 − π10)ρ1

(1 − π10)ρ1 + (1 − π01)ρ2 + (1 − π00)ρ3
,

ρ2(0) = (1 − π01)ρ2

(1 − π10)ρ1 + (1 − π01)ρ2 + (1 − π00)ρ3
,

ρ3(0) = (1 − π00)ρ3

(1 − π10)ρ1 + (1 − π01)ρ2 + (1 − π00)ρ3
.

Clearly, we also may consider quantities as

ρ1(1) = π10ρ1

π10ρ1 + π01ρ2 + π00ρ3
.

Then, we observe that

E(D1i D2� D3r Ii�r ) = ET ,A {Ii�rE(D1i D2� D3r |Ti , Ai , T�, A�, Tr , Ar )}
= ET ,A {Ii�rE(D1i |Ti , Ai )E(D2�|T�, A�)E(D3r |Tr , Ar )}
= ET ,A (ρ1iρ2�ρ3r Ii�r ) .

Similarly, we have

E(D1i D2�D3r ) = ET ,A (ρ1iρ2�ρ3r ) ,

so that (1) can be rewritten as

μ = ET ,A (ρ1iρ2�ρ3r Ii�r )

ET ,A (ρ1iρ2�ρ3r )
. (13)

Equation (13) suggests how to build estimators of VUS when some disease labels
are missing in the sample: we can use suitable estimates ρ̂ki to replace the Dki ’s in
(2). Therefore, a FI estimator of VUS is simply

μ̂FI =
∑n

i=1
∑n

�=1,� �=i
∑n

r=1
r �=�,r �=i

Ii�r ρ̂1i ρ̂2�ρ̂3r

∑n
i=1

∑n
�=1,� �=i

∑n
r=1

r �=�,r �=i
ρ̂1i ρ̂2�ρ̂3r

, (14)

where ρ̂ki (k = 1, 2, 3 and i = 1, . . . , n) are the estimated disease probabilities
obtained from the disease model (4).

Since E[Viρk(1)i + (1− Vi )ρk(0)i |T , A] = ρki , an alternative FI estimator of VUS
could be obtained by replacing Dki ’s in (2) with the estimates D̃ki,FI = Vi ρ̂k(1)i +
(1− Vi )ρ̂k(0)i . Unlike FI approach, MSI estimator only replace the disease status Dki

by the estimate ρ̂k(0)i for unverified subjects. Define Dki,MSI = Vi Dki +(1−Vi )ρk(0)i

and let D̃ki,MSI be the estimated version with ρk(0)i replaced by ρ̂k(0)i , and
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ρ̂1(0)i = (1 − π̂10i )ρ̂1i

(1 − π̂10i )ρ̂ki + (1 − π̂01i )ρ̂2i + (1 − π̂00i )ρ̂3i
,

ρ̂2(0)i = (1 − π̂01i )ρ̂2i

(1 − π̂10i )ρ̂1i + (1 − π̂01i )ρ̂2i + (1 − π̂00i )ρ̂3i
,

ρ̂3(0)i = (1 − π̂00i )ρ̂3i

(1 − π̂10i )ρ̂1i + (1 − π̂01i )ρ̂2i + (1 − π̂00i )ρ̂3i
.

Here, π̂10i = P̂r(Vi = 1|D1i = 1, D2i = 0, Ti , Ai ), π̂01i = P̂r(Vi = 1|D1i =
0, D2i = 1, Ti , Ai ) and π̂00i = P̂r(Vi = 1|D1i = 0, D2i = 0, Ti , Ai ). Such estimates
are derived from the verification model (3). Then, the MSI estimator of VUS is

μ̂MSI =
∑n

i=1
∑n

�=1,� �=i
∑n

r=1
r �=�,r �=i

Ii�r D̃1i,MSI D̃2�,MSI D̃3r ,MSI

∑n
i=1

∑n
�=1,� �=i

∑n
r=1

r �=�,r �=i
D̃1i,MSI D̃2�,MSI D̃3r ,MSI

. (15)

In the IPW approach, instead, each observation in the subset of verified units is
weighted by the inverse of the probability that the unit was selected for verification.
Thus, the IPW estimator of VUS is

μ̂IPW =
∑n

i=1
∑n

�=1,� �=i
∑n

r=1
r �=�,r �=i

Ii�r Vi V�Vr D1i D2� D3r π̂
−1
i π̂−1

� π̂−1
r

∑n
i=1

∑n
�=1,� �=i

∑n
r=1

r �=�,r �=i
Vi V�Vr D1i D2� D3r π̂

−1
i π̂−1

� π̂−1
r

. (16)

Clearly, the estimates π̂i also arise from the selection model (3).
The last estimator is the pseudo doubly robust (PDR) estimator. We define

Dki,PDR = Vi Dki

πi
− ρk(0)i (Vi − πi )

πi
.

An estimated version, D̃ki,PDR, is obtained by entering the estimates π̂i and ρ̂k(0)i in
the expression above. Then, the PDR estimator of VUS is

μ̂PDR =
∑n

i=1
∑n

�=1,� �=i
∑n

r=1
r �=�,r �=i

Ii�r D̃1i,PDR D̃2�,PDR D̃3r ,PDR

∑n
i=1

∑n
�=1,� �=i

∑n
r=1

r �=�,r �=i
D̃1i,PDR D̃2�,PDR D̃3r ,PDR

. (17)

The PDR estimator has the same nature as the SPE estimator discussed in To Duc
et al. (2016) under MAR assumption. However, under NI missing data mechanism
it no longer has the doubly robust property. In fact, correct specification of both the
verification model and the disease model is required for the PDR estimator to be
consistent.

Note that all VUS estimators basically require maximum likelihood estimates of
the parameters λ, τπ and τρ of the working models (3) and (4).
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3.2 Asymptotic behavior

Let ξ = (λ�, τ�
π , τ�

ρ )� be the nuisance parameter. Observe that the proposed VUS
estimators can be found as solutions of appropriate estimating equations (solved along
with the score equations). The estimating functions for FI, MSI, IPW and PDR estima-
tors have generic term (corresponding to a generic triplet of sample units), respectively,

Gi�r ,FI(μ, ξ) = ρ1i (τρ)ρ2�(τρ)ρ3r (τρ) (Ii�r − μ) ,

Gi�r ,MSI(μ, ξ) = D1i,MSI(ξ)D2�,MSI(ξ)D3r ,MSI(ξ) (Ii�r − μ) ,

Gi�r ,IPW(μ, ξ) = Vi V�Vr D1i D2�D3r

πi (ξ)π�(ξ)πk(ξ)
(Ii�r − μ) ,

Gi�r ,PDR(μ, ξ) = D1i,PDR(ξ)D2�,PDR(ξ)D3r ,PDR(ξ) (Ii�r − μ) .

In the following, we will use the general notation Gi�r ,∗(μ, ξ), where the star stands
for FI, MSI, IPW and PDR.

Recall that the nuisance parameter ξ is estimated by maximizing the log-likelihood
function (7). Let Si (ξ) be the i-th subject’s contribution to the score function, I(ξ) =
−E

(
∂

∂ξ�Si (ξ)
)
the Fisher information matrix for ξ and ξ̂ the maximum likelihood

estimator. Let μ0 be the true VUS value, and ξ0 = (λ�
0 , τ�

0π , τ�
0ρ)� the true value of

ξ . To give general theoretical results, we assume that:

(C1) the U-process

Un,∗(μ, ξ) = √
n {G∗(μ, ξ) − e∗(μ, ξ)}

is stochastically equicontinuous, where

G∗(μ, ξ) = 1

6n(n − 1)(n − 2)

n∑

i=1

n∑

�=1,� �=i

n∑

r=1
r �=�,r �=i

{

Gi�r ,∗(μ, ξ)

+ Gir�,∗(μ, ξ) + G�ir ,∗(μ, ξ) + G�ri,∗(μ, ξ)

+ Gri�,∗(μ, ξ) + Gr�i,∗(μ, ξ)

}

and

e∗(μ, ξ) = 1

6
E

{

Gi�r ,∗(μ, ξ) + Gir�,∗(μ, ξ) + G�ir ,∗(μ, ξ) + G�ri,∗(μ, ξ)

+ Gri�,∗(μ, ξ) + Gr�i,∗(μ, ξ)

}

;

(C2) e∗(μ, ξ) is differentiable in (μ, ξ), and
∂e∗(μ, ξ0)

∂μ

∣
∣
∣
∣
μ=μ0

�= 0;
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(C3) G∗(μ, ξ) and ∂

∂ξ� G∗(μ, ξ) converges uniformly (in probability) to e∗(μ, ξ)

and ∂

∂ξ� e∗(μ, ξ), respectively.

We now state the two main results about consistency and asymptotic normality of the
proposed estimators, whose proves are given in “Appendix 1”.

Theorem 1 (Consistency) Suppose that conditions (C1)–(C3) hold. Then, under the

verification model (3) and the disease model (4), μ̂∗
p→ μ0.

Recall that here the star indicates FI, MSI, IPW, and PDR.

Theorem 2 (Asymptotic normality) Under conditions (C1)–(C3), if the verification
model (3) and the disease model (4) hold, then

√
n
(
μ̂∗ − μ0

) d→ N (0,Λ∗),

where Λ∗ is given in (20).

It is worth noting that conditions (C1)–(C3) hold in our working model, which is
based on (3), with h(T , A; τπ ) = τπ1 +τπ2T + A�τπ3 , and (4), with f (T , A; τρk ) =
τρ1k +τρ2k T +A�τρ3k . In “Appendix 1”we discuss how to obtain a consistent estimator
of Λ∗.

4 Simulation study

In this section, we provide empirical evidence, through simulation experiments, on the
behavior of the proposed VUS estimators in finite samples. The number of replications
in each simulation experiment is set to be 1000.

In the study, we consider two scenarios which correspond to quite different values
of the true VUS. For both scenarios, we fix three sample sizes: 250, 500 and 1500.

In the first scenario, for each unit, we generate the test result Ti and a covariate Ai

from a bivariate normal distribution,

(Ti , Ai ) ∼ N2

((
3.7
1.85

)

,

(
3.71 1.36
1.36 3.13

))

.

The disease status Di is generated according to model (4) with f (T , A; τρ1) =
15 − 3.3T − 0.7A and f (T , A; τρ2) = 9.5 − 1.7T − 0.3A. Then, the verification
label Vi is obtained according to model (3) with h(T , A; τπ ) = 2 + 0.5T − 1.2A
and λ1 = −2, λ2 = −1. Under such data generating process, θ1 = 0.4, θ2 = 0.35,
θ3 = 0.25, and the verification rate is roughly 0.57. The trueVUS value is 0.791. In the
second scenario, we generate the test result and the covariate from independent normal
distributions. Specifically, Ti ∼ N (0.65, 1) and Ai ∼ N (−0.3, 0.64). The disease
statusDi is generated according to model (4) with f (T , A; τρ1) = 4.6−3.3T −6.4A
and f (T , A; τρ2) = 4 − 1.7T − 3.2A. Then, Vi is obtained according to model (3)
with h(T , A; τπ ) = 1 + 1.2T − 1.5A and λ1 = −2.5, λ2 = −1. Under this setting,
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θ1 = 0.55, θ2 = 0.32, θ3 = 0.13, and the verification rate is roughly 0.58. The true
VUS value is 0.387.

Table 1 contains Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations for the proposed VUS estimators (FI, MSI, IPW, PDR) in
the two considered scenarios, at the chosen sample sizes. The table also reports the
empirical coverages of the 95% confidence intervals for the VUS, obtained through
the normal approximation approach applied to each estimator. To make a compari-
son, Table 1 also gives the results for the semiparametric efficient estimator (SPE)
discussed in To Duc et al. (2016), whose realizations are obtained, in all experiments,
under theMAR assumption, i.e., by setting λ1 = λ2 = 0 inmodel (3). The comparison
allows us to evaluate the possible impact of an incorrect hypothesis MAR on the most
robust estimator among those, FI, MSI, IPW and SPE, which are built to work under
ignorable missing data mechanism (see To Duc et al. 2016).

Overall, simulation results are consistent with our theoretical findings and show
the usefulness of the proposed estimators, which also arises from the comparison with
the SPE estimator used improperly. The results also show a good behavior of the
estimated standard deviations, which are generally close to the corresponding Monte
Carlo values. In general, FI andMSI estimators seem to bemore efficient than IPWand
PDR estimators. However, for all estimators, acceptable bias levels and sufficiently
accurate associated confidence intervals seem to require a large sample size (at least
500, and, prudently, even higher).

This issue of poor accuracy has already been noted by several authors, including Liu
andZhou (2010), in the context of two-class classification problems. In our experience,
the trouble appears to arise because of a bad behavior of the maximum likelihood
estimates in the verification and disease models. If the sample size is not large enough,
the data do not contain enough information to effectively estimate the parameters λ,
τπ , τρ1 and τρ2 . It seems particularly difficult to get good estimates of nonignorable
parameters.

Table 2, giving the Monte Carlo means for the maximum likelihood estimators of
the elements of λ, τπ , τρ1 and τρ2 , for the three considered sample sizes, allows us
to look at the bias of the estimators. More importantly, Figs. 1 and 2 (which refer
to scenario I and II, respectively) graphically depict values of the estimates of λ1,
λ2 and τπ1 obtained in the thousand replications, for each sample size. The plots
clearly show the instability of themaximum likelihood estimates at lower sample sizes,
with many values dramatically different from the corresponding target values, heavily
impacting on the bias of the estimators. With larger sample size, this phenomenon
almost completely vanishes, the maximum likelihood estimators behave pretty well,
with a positive impact on the behavior of the VUS estimators.

As requested by aReviewer, in “Appendix 3”wepresent someother results, deriving
from simulation experiments that cover certain specific situations.

5 An illustration

To illustrate the application of our proposed methods, we used data from Alzheimer’s
Disease Neuroimaging Initiative (ADNI, adni.loni.usc.edu). ADNI was launched in
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Table 1 Monte Carlo means (MCmean), relative bias (Bias), Monte Carlo standard deviations (MCsd) and
estimated standard deviations (Esd) for the proposed VUS estimators, and the SPE estimator under MAR
assumption

Sample size Estimators MCmean Bias (%) MCsd Esd CP (%)

Scenario I: VUS = 0.791

n = 250 FI 0.772 −2.4 0.056 0.050 89.9

MSI 0.770 −2.7 0.057 0.051 90.6

IPW 0.770 −2.6 0.070 0.061 88.1

PDR 0.766 −3.2 0.085 0.075 90.8

SPE (MAR) 0.771 −2.5 0.073 0.138 93.2

n = 500 FI 0.783 −1.0 0.035 0.032 93.3

MSI 0.782 −1.1 0.036 0.033 93.4

IPW 0.782 −1.2 0.047 0.042 92.2

PDR 0.782 −1.2 0.053 0.058 94.0

SPE (MAR) 0.771 −2.6 0.047 0.040 93.0

n = 1500 FI 0.790 −0.2 0.016 0.016 95.0

MSI 0.789 −0.2 0.016 0.016 95.2

IPW 0.788 −0.3 0.025 0.024 94.4

PDR 0.789 −0.3 0.025 0.024 95.2

SPE (MAR) 0.771 −2.5 0.027 0.025 89.4

Scenario II: VUS = 0.387

n = 250 FI 0.368 −5.0 0.064 0.057 87.4

MSI 0.367 −5.2 0.065 0.059 87.9

IPW 0.377 −2.6 0.084 0.074 87.6

PDR 0.369 −4.6 0.086 0.075 89.5

SPE (MAR) 0.346 −10.6 0.063 0.058 84.5

n = 500 FI 0.379 −2.0 0.045 0.041 90.9

MSI 0.379 −2.1 0.046 0.042 91.3

IPW 0.380 −1.8 0.060 0.056 91.2

PDR 0.381 −1.6 0.060 0.053 92.0

SPE (MAR) 0.345 −10.8 0.044 0.042 76.5

n = 1500 FI 0.388 0.2 0.023 0.022 94.2

MSI 0.388 0.2 0.023 0.023 94.3

IPW 0.388 0.3 0.034 0.032 94.9

PDR 0.389 0.4 0.033 0.029 93.2

SPE (MAR) 0.346 −10.7 0.026 0.025 76.5

CP denotes Monte Carlo coverages for the 95% confidence intervals, obtained through the normal approx-
imation approach applied to each estimator

2003 as a public–private partnership with the primary goal of finding suitable diag-
nostic tests or biomarkers for early detection and tracking of the Alzheimer’s disease
(see www.adni-info.org for up-to-date information).

Study subjects are classified in one of three classes, i.e., cognitively normal (CN),
mild cognitive impairment (MCI), and Alzheimer’s disease (AD) on the basis of neu-
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Table 2 Monte Carlo means (MCmean) for the maximum likelihood estimators of the elements of nuisance
parameters λ, τπ , τρ1 and τρ2

Scenario I Scenario II

True MCmean True MCmean

n 250 500 1500 250 500 1500

λ1 −2.00 −1.01 −1.76 −1.95 −2.50 −2.09 −2.30 −2.50

λ2 −1.00 −0.45 −0.87 −0.98 −1.00 −0.99 −0.96 −0.97

τπ1 2.00 1.25 1.80 1.95 1.00 1.17 1.00 1.00

τπ2 0.50 0.65 0.55 0.51 1.20 1.39 1.28 1.22

τπ3 −1.20 −1.24 −1.22 −1.21 −1.50 −1.25 −1.40 −1.51

τρ11 15.00 15.53 15.28 15.10 4.60 4.44 4.58 4.66

τρ21 −3.30 −3.41 −3.36 −3.32 −3.30 −3.29 −3.33 −3.34

τρ31 −0.70 −0.89 −0.78 −0.72 −6.40 −6.94 −6.70 −6.48

τρ12 9.50 10.03 9.71 9.57 4.00 4.12 4.11 4.05

τρ22 −1.70 −1.79 −1.73 −1.71 −1.70 −1.77 −1.76 −1.73

τρ32 −0.30 −0.40 −0.34 −0.31 −3.20 −3.62 −3.42 −3.25

ropsychological tests. Various clinical, imaging, genetic and biochemical markers are
also available. Among them, we consider cerebrospinal fluid (CSF) tau protein as the
primary marker, and amyloid beta 1–42 (Aβ1–42) as a covariate. The full dataset in
our illustration refers to 1209 subjects (CN: 363, MCI: 618, AD: 228 at baseline visit).
Exploratory analysis suggests that high values of CFS tau protein are associated with
severe disease status.

Here, we want to evaluate the accuracy of CSF tau protein as a marker for the
Alzheimer’s disease assuming nonignorable missingness in the disease status of some
patients. To this aim, we induce missingness by randomly selecting patients from the
three classes in different proportions. Then, about 66% and 16% patients in AD and
MCI classes, respectively, are given a missing disease status. No missing status is set
in the CN class. Overall, in the resulting dataset, for 76.4% of the subjects the true
disease status is present. For convenience, values of the considered variables, i.e., CSF
tau protein and amyloid beta 1–42, are standardized. In what follows, the standardized
variables will be denoted as T and A, respectively.

We focus on VUS estimation of marker T by applying the FI, MSI, IPW and
PDR estimators proposed in Sect. 3. For the sake of comparison, bias-corrected VUS
estimators under MAR assumption (To Duc et al. 2016), are also employed. Estimates
under the MAR assumption are obtained through the R package bcROCsurface
(To Duc 2017), in which the verification model is fitted by using logistic regression
with T and A as covariates, and the disease model is fitted by means of multinomial
logistic regression with T and A as regressors. Moreover, we also compute the VUS
estimate based on the full dataset (Full estimate).

The maximum likelihood estimate of the non-ignorable parameter λ = (λ1, λ2)
�

in the verification model (3) is (18.766, 3.344)�. The log-likelihood ratio test for the
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Fig. 1 Values of the estimates of λ1, λ2, and τπ1 , obtained in thousand Monte Carlo replications (Scenario
I), for each sample size. The horizontal lines indicate the true parameter values

hypothesis H0 : λ = 0 versus HA : λ �= 0 achieves a p-value of 0.0066, indicating
that the non-ignorable effect is significant.

Table 3 shows the Full and the bias-corrected NI and MAR estimates of VUS. The
table also gives the estimated standard deviations, and approximated 95% confidence
intervals. For the Full estimate, the bootstrap standard deviation is reported (250 boot-
strap replications). Standard deviations of NI and MAR estimates are obtained by
using asymptotic theory. As expected, taking the Full estimate as a benchmark, MAR
estimators seem to overestimate the VUS, whereas the NI estimators appear to per-
form better, in particular FI and MSI. Consistently with simulation results in Table 1,
the NI bias-corrected FI and MSI estimators appear also to be more efficient than the
IPW and PDR estimators. Taking into account that the logistic model (3) used for the
verification process does not reflect the induced verification mechanism, this seems to
suggest that the NI bias-corrected FI and MSI estimators are less sensitive to possible
misspecifications of the verification process.
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Fig. 2 Values of the estimates of λ1, λ2, and τπ1 , obtained in thousand Monte Carlo replications (Scenario
II), for each sample size. The horizontal lines indicate the true parameter values

Table 3 ADNI dataset. Estimates of VUS for the standardized CSF tau protein, associated estimated
standard deviations (SD) and 95% confidence intervals. SD for Full estimated is obtained via bootstrap
resampling

VUS Estimate SD 95% confidence interval

Full 0.338 0.019 (0.301, 0.375)

NI FI 0.335 0.016 (0.303, 0.368)

MSI 0.333 0.018 (0.298, 0.368)

IPW 0.352 0.024 (0.305, 0.398)

PDR 0.344 0.021 (0.302, 0.384)

MAR FI 0.369 0.031 (0.309, 0.429)

MSI 0.366 0.031 (0.304, 0.427)

IPW 0.373 0.034 (0.307, 0.440)

SPE 0.362 0.033 (0.297, 0.426)
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6 Conclusion

In this paper, we have proposed four bias–corrected estimators of VUS under NI miss-
ing data mechanism. The estimators are obtained by a likelihood–based approach,
which uses the verification model (3) together with the disease model (4). The iden-
tifiability of the joint model is proved, and hence, the nuisance parameters can be
estimated by maximizing the log-likelihood function or solving the score equations.
Consistency and asymptotic normality of the proposed FI, MSI, IPW and PDR esti-
mators are established, and variance estimation is discussed.

The proposed VUS estimators are pretty easy to implement and require the use
of some numerical routine to maximize the log-likelihood function (or to solve the
score equations). Our simulation results show their usefulness, whilst confirming the
evidence emerging in the two-class case, according to which a reasonable large sample
size is necessary to make sufficiently accurate inference. In practice, among FI, MSI,
IPW and PDR estimators, we would reccommend FI and MSI estimators thanks to
their greater efficiency.

The poor accuracy problem seems to be related to an intrinsic difficulty of the
maximum likelihood method in providing accurate estimates of the parameters of the
disease and verification models, in particular of the nonignorable parameters. Over-
coming this drawback is a stimulating challenge and deserves further investigation.
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Appendix 1

Proves

Proof of Theorem 1 We can show that E{Gi�r ,∗(μ0, ξ0)} = 0 (see the “Appendix 2”).
Then e∗(μ0, ξ0) = 0, and, by condition (C2) and an application of implicit function
theorem, there exists a neighborhood of ξ0 in which a continuously differentiable
function, m(ξ), is uniquely defined such that m(ξ0) = μ0 and e∗(m(ξ), ξ) = 0.

Since the maximum likelihood estimator ξ̂ is consistent, i.e., ξ̂
p→ ξ0, we have that
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μ̃∗ = m(ξ̂)
p→ μ0. On the other hand, G∗(μ̂∗, ξ̂) = 0 and condition (C3) implies that

e∗(μ̂∗, ξ̂)
p→ 0. Thus, μ̂∗

p→ μ̃∗. 	


Proof of Theorem 2 We have

0 = √
nG∗(μ̂∗, ξ̂)

0 = √
nG∗(μ̂∗, ξ̂) + √

ne∗(μ̂∗, ξ̂) − √
ne∗(μ̂∗, ξ̂).

Since e∗(μ0, ξ0) = 0, we get

0 = √
nG∗(μ̂∗, ξ̂) + √

ne∗(μ̂∗, ξ̂) − √
ne∗(μ̂∗, ξ̂) + √

ne∗(μ0, ξ0) − √
ne∗(μ0, ξ0)

= √
n
{

G∗(μ̂∗, ξ̂) − e∗(μ̂∗, ξ̂)
}

+ √
n
{

e∗(μ̂∗, ξ̂) − e∗(μ0, ξ0)
}

+ √
ne∗(μ0, ξ0)

− √
nG∗(μ0, ξ0) + √

nG∗(μ0, ξ0)

=
[√

n
{

G∗(μ̂∗, ξ̂) − e∗(μ̂∗, ξ̂)
}

− √
n
{
G∗(μ0, ξ0) − e∗(μ0, ξ0)

}]

+ √
n
{

e∗(μ̂∗, ξ̂) − e∗(μ0, ξ0)
}

+ √
nG∗(μ0, ξ0).

Condition (C1) implies that the first term in right hand side of the last identity is op(1).
Using the Taylor expansion, we have

0 = op(1) + √
n
{

e∗(μ̂∗, ξ̂) − e∗(μ0, ξ0)
}

+ √
nG∗(μ0, ξ0)

= op(1) + √
n(μ̂∗ − μ0)

∂e∗(μ, ξ0)

∂μ

∣
∣
∣
∣
μ=μ0

+ √
n(ξ̂ − ξ0)

∂e∗(μ0, ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ0

+ √
nG∗(μ0, ξ0). (18)

It is straightforward to show that

∂e∗(μ, ξ0)

∂μ

∣
∣
∣
∣
μ=μ0

= −Pr(D1 = 1)Pr(D2 = 1)Pr(D3 = 1) = −θ1θ2θ3.

By standard results on the limit distribution of U-statistics (van der Vaart 2000, The-
orem 12.3, Chap. 12),

√
nUn,∗(μ0, ξ0) = √

n
{
G∗(μ0, ξ0) − e∗(μ0, ξ0)

}

= √
nG∗(μ0, ξ0)

p→ √
nG̃∗(μ0, ξ0),

where
√

nG̃∗(μ, ξ) is the projection of Un,∗ onto the set of all statistics of the form
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√
nG̃n,∗(μ, ξ) = 1

2
√

n

n∑

i=1

E

{

Gi�r ,∗(μ, ξ) + Gir�,∗(μ, ξ) + G�ir ,∗(μ, ξ)

+ G�ri,∗(μ, ξ) + Gri�,∗(μ, ξ) + Gr�i,∗(μ, ξ)
∣
∣Oi

}

for � �= i and r �= �, r �= i . For the maximum likelihood estimator ξ̂ , we can write

√
n
(
ξ̂ − ξ0

)
= 1√

n

[

−∂E {Si (ξ)}
∂ξ�

∣
∣
∣
∣
ξ=ξ0

]−1 n∑

i=1

Si (ξ0) + op(1)

= 1√
n
I(ξ)−1

n∑

i=1

Si (ξ0) + op(1).

Hence, from (18),

θ1θ2θ3
√

n(μ̂∗ − μ0)

= op(1) + 1√
n

∂e∗(μ0, ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ0

I(ξ)−1
n∑

i=1

Si (ξ0)

+ 1

2
√

n

n∑

i=1

E

{

Gi�r ,∗(μ0, ξ0) + Gir�,∗(μ0, ξ0) + G�ir ,∗(μ0, ξ0)

+ G�ri,∗(μ0, ξ0) + Gri�,∗(μ0, ξ0) + Gr�i,∗(μ0, ξ0)
∣
∣Oi

}

= op(1) + 1√
n

n∑

i=1

[
∂e∗(μ0, ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ0

I(ξ)−1Si (ξ0)

+ 1

2
E

{

Gi�r ,∗(μ0, ξ0) + Gir�,∗(μ0, ξ0) + G�ir ,∗(μ0, ξ0)

+ G�ri,∗(μ0, ξ0) + Gri�,∗(μ0, ξ0) + Gr�i,∗(μ0, ξ0)
∣
∣Oi

}]

= op(1) + 1√
n

n∑

i=1

Qi,∗(μ0, ξ0) = op(1) + 1√
n

Q∗(μ0, ξ0). (19)

Note that the observed data Oi are i.i.d, then Qi,∗(μ0, ξ0) are also i.i.d. In addition,
we easily show that

0 = E

[

E

{

Gi�r ,∗(μ0, ξ0) + Gir�,∗(μ0, ξ0) + G�ir ,∗(μ0, ξ0) + G�ri,∗(μ0, ξ0)

+ Gri�,∗(μ0, ξ0) + Gr�i,∗(μ0, ξ0)
∣
∣Oi

}]

.
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Therefore, E{Qi,∗(μ0, ξ0)} = 0, and 1√
n

Q∗(μ0, ξ0)
d→ N (0,Var

{
Qi,∗(μ0, ξ0)

}
)

by the Central Limit Theorem. It follows that

√
n
(
μ̂∗ − μ0

) d→ N (0,Λ∗) ,

where

Λ∗ = Var
{

Qi,∗(μ0, ξ0)
}

θ21 θ22 θ23
. (20)

	

Variance estimation

Under condition (C3), a consistent estimator of Λ∗ can be obtained as

Λ̂∗ =
Var

{
Q̂i,∗(μ̂∗, ξ̂)

}

θ̂21,∗θ̂22,∗θ̂23,∗
=

1
n−1

n∑

i=1
Q̂2

i,∗(μ̂∗, ξ̂)

θ̂21,∗θ̂22,∗θ̂23,∗
, (21)

where θ̂k,∗ are the estimates of the disease probabilities, θk for k = 1, 2, 3. Specifi-
cally, θ̂k,FI = 1

n

∑n
i=1 ρ̂ki , θ̂k,MSI = 1

n

∑n
i=1 D̃ki,MSI, θ̂k,PDR = 1

n

∑n
i=1 D̃ki,PDR and

θ̂k,IPW = ∑n
i=1 Vi Dki π̂

−1
i

/
∑n

i=1 Vi π̂
−1
i . According to (19), we have that

Q̂i,∗(μ̂∗, ξ̂)

=

⎧
⎪⎪⎨

⎪⎪⎩

1

(n − 1)(n − 2)

n∑

i=1

n∑

�=i
� �=i

n∑

r=1
r �=�,r �=i

∂Gi�r ,∗(μ̂∗, ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

⎫
⎪⎪⎬

⎪⎪⎭

×
{

−
n∑

i=1

∂Si (ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

}−1

Si (ξ̂)

+ 1

2(n − 1)(n − 2)

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

{

Gi�r ,∗(μ̂∗, ξ̂) + Gir�,∗(μ̂∗, ξ̂) + G�ir ,∗(μ̂∗, ξ̂)

+ G�ri,∗(μ̂∗, ξ̂) + Gri�,∗(μ̂∗, ξ̂) + Gr�i,∗(μ̂∗, ξ̂)

}

.

In addition, for fixed i , we also have that

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

{
Gi�r ,∗(μ̂∗, ξ̂) + Gikr ,∗(μ̂∗, ξ̂)

}
= 2

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

Gi�r ,∗(μ̂∗, ξ̂),
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n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

{
G�ir ,∗(μ̂∗, ξ̂) + Gri�,∗(μ̂∗, ξ̂)

}
= 2

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

G�ir ,∗(μ̂∗, ξ̂),

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

{
G�ri,∗(μ̂∗, ξ̂) + Gr�i,∗(μ̂∗, ξ̂)

}
= 2

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

Gr�i,∗(μ̂∗, ξ̂).

Therefore,

Q̂i,∗(μ̂∗, ξ̂)

=

⎧
⎪⎪⎨

⎪⎪⎩

1

(n − 1)(n − 2)

n∑

i=1

n∑

�=i
� �=i

n∑

r=1
r �=�,r �=i

∂Gi�r ,∗(μ̂∗, ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

⎫
⎪⎪⎬

⎪⎪⎭

×
{

−
n∑

i=1

∂Si (ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

}−1

Si (ξ̂)

+ 1

(n − 1)(n − 2)

n∑

�=1
� �=i

n∑

r=1
r �=i,r �=�

{

Gi�r ,∗(μ̂∗, ξ̂) + G�ir ,∗(μ̂∗, ξ̂) + Gr�i,∗(μ̂∗, ξ̂)

}

.

(22)

The quantity
∑n

i=1
∂Si (ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

could be obtained as the Hessian matrix of the

log-likelihood function at ξ̂ . In order to compute ∂Gi�r ,∗(μ̂∗,ξ)

∂ξ�

∣
∣
∣
∣
ξ=ξ̂

, we have to

get the derivatives ∂

∂ξ� ρki (τ 0ρk ),
∂

∂ξ� ρk(0)i (ξ), ∂

∂ξ� π−1
i (λ, τπ ), ∂

∂ξ� π10i (λ, τπ ),
∂

∂ξ� π01i (λ, τπ ) and ∂

∂ξ� π00i (λ, τπ ).

In Sect. 2.3, we obtain

∂

∂λ1
π10i (λ, τπ ) = π10i (1 − π10i ); ∂

∂λ2
π10i (λ, τπ ) = 0;

∂

∂λ1
π01i (λ, τπ ) = 0; ∂

∂λ2
π01i (λ, τπ ) = π01i (1 − π01i );

∂

∂λ1
π00i (λ, τπ ) = 0; ∂

∂λ2
π00i (λ, τπ ) = 0.

and
∂

∂τ�
π

πd1d2i = U i (1 − πd1d2i )πd1d2i ,

where (d1, d2) belongs to the set {(1, 0), (0, 1), (0, 0)}. Also, we have
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∂

∂τ�
ρ1

ρ1i (τρ) = U iρ1i (1 − ρ1i ); ∂

∂τ�
ρ2

ρ1i (τρ) = −U iρ1iρ2i ;
∂

∂τ�
ρ2

ρ2i (τρ) = U iρ2i (1 − ρ2i ); ∂

∂τ�
ρ1

ρ2i (τρ) = −U iρ1iρ2i .

Moreover,

∂

∂λs
π−1

i (λ, τπ ) = −Dsi
1 − πi

πi
; ∂

∂τ�
π

π−1
i (λ, τπ ) = −U i

1 − πi

πi
,

with s = 1, 2. Then, recall that

ρ1(0)i = (1 − π10i )ρ1i

(1 − π10i )ρ1i + (1 − π01i )ρ2i + (1 − π00i )ρ3i
,

ρ2(0)i = (1 − π01i )ρ2i

(1 − π10i )ρ1i + (1 − π01i )ρ2i + (1 − π00i )ρ3i
,

ρ3(0)i = (1 − π00i )ρ3i

(1 − π10i )ρ1i + (1 − π01i )ρ2i + (1 − π00i )ρ3i
.

After some algebra, we get

∂

∂λ1
ρ1(0)i (ξ) = 1

z2
[−π10i (1 − π10i )ρ1i {(1 − π01i )ρ2i + (1 − π00i )ρ3i }] ,

∂

∂λ2
ρ1(0)i (ξ) = 1

z2
ρ1iρ2iπ01i (1 − π01i )(1 − π10i ),

∂

∂τ�
π

ρ1(0)i (ξ) = −U i

z2
ρ1i (1 − π10i )

{

ρ2i (1 − π01i )(π10i − π01i )

+ ρ3i (1 − π00i )(π10i − π00i )

}

,

∂

∂τ�
ρ1

ρ1(0)i (ξ) = U i

z2
ρ1i (1 − π10i ) {ρ2i (1 − π01i ) + ρ3i (1 − π00i )} ,

∂

∂τ�
ρ2

ρ1(0)i (ξ) = −U i

z2
ρ1iρ2i (1 − π10i )(1 − π01i ).

Finally, we set z = (1 − π10i )ρ1i + (1 − π01i )ρ2i + (1 − π00i )ρ3i , and get

∂

∂λ1
ρ2(0)i (ξ) = 1

z2
ρ1iρ2iπ10i (1 − π10i )(1 − π01i ),

∂

∂λ2
ρ2(0)i (ξ) = 1

z2
[−π01i (1 − π01i )ρ2i {(1 − π10i )ρ1i + (1 − π00i )ρ3i }] ,

∂

∂τ�
π

ρ2(0)i (ξ) = −U i

z2
ρ2i (1 − π01i )

{

ρ1i (1 − π10i )(π01i − π10i )

+ ρ3i (1 − π00i )(π01i − π00i )

}

,
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∂

∂τ�
ρ1

ρ2(0)i (ξ) = −U i

z2
ρ1iρ2i (1 − π10i )(1 − π01i ),

∂

∂τ�
ρ2

ρ2(0)i (ξ) = U i

z2
ρ2i (1 − π01i ) {ρ1i (1 − π10i ) + ρ3i (1 − π00i )} .

The derivative
∂

∂ξ� ρ3(0)i (ξ) can be computed by using the fact that ρ3(0)i = 1 −
ρ1(0)i − ρ2(0)i .

Appendix 2

Here, we show that the estimating functions Gi�r ,∗ are unbiased under the working
disease and verification models. Recall that ξ = (λ�, τ�

π , τ�
ρ )�.

– FI estimator
We have

E
{
Gi�r ,FI(μ0, ξ0)

} = E
{
ρ1i (τ 0ρ)ρ2�(τ 0ρ)ρ3r (τ 0ρ)(Ii�r − μ)

}

= E {ρ1iρ2�ρ3r (Ii�r − μ0)} .

Hence, E
{
Gi�r ,FI(μ0, ξ0)

} = 0 from (13).
– MSI estimator
Consider E

{
Dki,MSI(ξ0)|Ti , Ai

}
. We have

E
{

Dki,MSI(ξ0)|Ti , Ai
}

= E
{

Vi Dki + (1 − Vi )ρk(0)i (ξ0)|Ti , Ai
}

= E
[
E
{

Vi Dki + (1 − Vi )ρk(0)i (ξ0)|Ti , Ai , Vi
} |Ti , Ai

]

= Pr(Vi = 1|Ti , Ai )E (Dki |Vi = 1, Ti , Ai )

+ Pr(Vi = 0|Ti , Ai )E
(
ρk(0)i (ξ0)|Vi = 0, Ti , Ai

)

= Pr(Vi = 1|Ti , Ai )Pr(Dki = 1|Vi = 1, Ti , Ai )

+ Pr(Vi = 0|Ti , Ai )Pr(Dki = 1|Vi = 0, Ti , Ai )

= Pr(Dki = 1|Ti , Ai ) = ρki .

Therefore,

E
{
Gi�r ,MSI(μ0, ξ0)

}

= E
{

D1i,MSI(ξ0)D2�,MSI(ξ0)D3r ,MSI(ξ0) (Ii�r − μ0)
}

= E

[
(Ii�r − μ0)E

{
D1i,MSI(ξ0)|Ti , Ai

}
E
{

D2�,MSI(ξ0)|T�, A�

}

× E
{

D3r ,MSI(ξ0)|Tr , Ar
} ]

= E {ρ1iρ2�ρ3r (Ii�r − μ0)} .
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– IPW estimator
In this case,

E

(
Vi Dki

πi (ξ0)

∣
∣
∣
∣Ti , Ai

)

= E (Vi Dki |Ti , Ai )

πi (ξ0)

= E
{

DkiE (Vi |D1i , D2i , Ti , Ai )
∣
∣Ti , Ai

}

πi (ξ0)

= E (πi Dki |Ti , Ai )

πi
= ρki .

Thus,

E
{
Gi�r ,IPW(μ0, ξ0)

}

= E

{
Vi V�Vr D1i D2� D3r

πi (ξ0)π�(ξ0)πk(ξ0)
(Ii�r − μ0)

}

= E

{

(Ii�r − μ0)E

(
Vi D1i

πi (ξ0)

∣
∣
∣
∣Ti , Ai

)

E

(
V� D2�

π�(ξ0)

∣
∣
∣
∣T�, A�

)

× E

(
Vr D3r

πr (ξ0)

∣
∣
∣
∣Tr , Ar

)}

= E {ρ1iρ2�ρ3r (Ii�r − μ0)} .

– PDR estimator

E
{

Dki,PDR(ξ0)|Ti , Ai
}

= E

[

E

{
Vi Dki

πi (ξ0)
− ρk(0)i (ξ0)

(
Vi

πi (ξ0)
− 1

) ∣
∣
∣
∣D1i , D2i , Ti , Ai

} ∣
∣
∣
∣Ti , Ai

]

= E

{

DkiE

(
Vi

πi (ξ0)

∣
∣
∣
∣D1i , D2i , Ti , Ai

)

− ρk(0)i (ξ0)E

(
Vi

πi (ξ0)
− 1

∣
∣
∣
∣D1i , D2i , Ti , Ai

) ∣
∣
∣
∣Ti , Ai

}

= E(Dki |Ti , Ai ) = ρki .

Hence,

E
{
Gi�r ,PDR(μ0, ξ0)

}

= E
{

D1i,PDR(ξ0)D2�,PDR(ξ0)D3r ,PDR(ξ0) (Ii�r − μ0)
}

= E

[
(Ii�r − μ0)E

{
D1i,PDR(ξ0)|Ti , Ai

}
E
{

D2�,PDR(ξ0)|T�, A�

}

× E
{

D3r ,PDR(ξ0)|Tr , Ar
} ]

= E {ρ1iρ2�ρ3r (Ii�r − μ0)} .
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Table 4 Monte Carlo means
(MCmean) for the maximum
likelihood estimators of the
elements of nuisance parameters
λ, τπ , τρ1 and τρ2 , when the
true missing data mechanism is
MAR

True MCmean

n 250 500 1500

λ1 0.00 0.41 0.23 0.03

λ2 0.00 0.37 0.19 0.03

τπ1 − 1.00 − 1.41 − 1.28 − 1.03

τπ2 1.00 1.12 1.07 1.01

τπ3 − 1.20 − 1.26 − 1.23 − 1.21

τρ11 15.00 15.64 15.22 15.06

τρ21 − 3.30 − 3.43 − 3.35 − 3.31

τρ31 − 0.70 − 0.81 − 0.75 − 0.71

τρ12 9.50 9.92 9.65 9.54

τρ22 − 1.70 − 1.77 − 1.73 − 1.70

τρ32 − 0.30 − 0.38 − 0.33 − 0.31

Table 5 Monte Carlo means (MCmean), relative bias (Bias), Monte Carlo standard deviations (MCsd) and
estimated standard deviations (Esd) for the proposed VUS estimators and the SPE estimator, when the true
missing data mechanism is MAR

Sample size Estimators MCmean Bias (%) MCsd Esd CP (%)

n = 250 FI 0.773 − 2.3 0.059 0.056 91.0

MSI 0.771 − 2.6 0.059 0.058 91.6

IPW 0.774 − 2.2 0.082 0.069 87.4

PDR 0.766 − 3.1 0.128 0.098 91.6

SPE (MAR) 0.791 0.0 0.084 0.063 90.2

n = 500 FI 0.783 − 1.0 0.037 0.037 94.6

MSI 0.782 − 1.1 0.037 0.037 95.0

IPW 0.784 − 0.9 0.057 0.048 90.3

PDR 0.781 − 1.3 0.069 0.060 94.5

SPE (MAR) 0.792 0.2 0.050 0.040 92.9

n = 1500 FI 0.788 − 0.3 0.020 0.019 93.8

MSI 0.788 − 0.4 0.020 0.019 94.4

IPW 0.789 − 0.3 0.034 0.028 92.9

PDR 0.789 − 0.3 0.035 0.029 95.0

SPE (MAR) 0.791 0.0 0.030 0.026 93.0

CP denotes Monte Carlo coverages for the 95% confidence intervals, obtained through the normal approx-
imation approach applied to each estimator

Appendix 3

Here, we present results of an additional simulation study, that covers the cases of:
(i) missing at random (MAR) assumption for the missigness of the disease status; (ii)
model misspecification in the estimation process.

In the study, the diagnostic test T , covariate A and the disease statusD are generated
as in scenario I of Sect. 4 of the paper. Moreover, the verification status V is:
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Table 6 Monte Carlo means
(MCmean) for the maximum
likelihood estimators of the
elements of nuisance parameters
λ, τπ , τρ1 and τρ2 , when the
estimated models are
misspecified

True MCmean

n 250 500 1500

λ1 − 2.00 − 4.89 − 4.55 − 4.43

λ2 − 1.00 − 2.08 − 2.08 − 2.03

τπ1 2.00 4.87 4.54 4.43

τπ2 0.50 0.90 0.85 0.82

τπ3 − 1.20 − 1.37 − 1.33 − 1.31

τρ11 15.00 15.79 15.14 14.90

τρ21 − 3.30 − 3.43 − 3.30 − 3.25

τρ31 − 0.70 − 0.46 − 0.36 − 0.36

τρ12 9.50 9.88 9.53 9.35

τρ22 − 1.70 − 1.75 − 1.70 − 1.67

τρ32 − 0.30 − 0.36 − 0.30 − 0.29

Table 7 Monte Carlo means (MCmean), relative bias (Bias), Monte Carlo standard deviations (MCsd) and
estimated standard deviations (Esd) for the proposed VUS estimators and the SPE estimator, when the
estimated models are misspecified

Sample size Estimators MCmean Bias (%) MCsd Esd CP (%)

n = 250 FI 0.779 − 1.5 0.043 0.041 92.6

MSI 0.777 − 1.8 0.043 0.042 93.4

IPW 0.781 − 1.3 0.059 0.043 88.4

PDR 0.779 − 1.6 0.108 0.046 92.4

SPE (MAR) 0.780 − 1.4 0.090 0.043 94.5

n = 500 FI 0.779 − 1.5 0.030 0.029 93.5

MSI 0.778 − 1.6 0.030 0.030 93.3

IPW 0.787 − 0.5 0.042 0.032 89.8

PDR 0.781 − 1.2 0.050 0.033 94.8

SPE (MAR) 0.782 − 1.2 0.046 0.030 93.6

n = 1500 FI 0.781 − 1.3 0.017 0.017 92.5

MSI 0.780 − 1.3 0.017 0.017 92.1

IPW 0.786 − 0.6 0.030 0.021 91.9

PDR 0.781 − 1.2 0.045 0.020 94.5

SPE (MAR) 0.780 − 1.4 0.026 0.018 92.8

CP denotes Monte Carlo coverages for the 95% confidence intervals, obtained through the normal approx-
imation approach applied to each estimator

(i) generated as in scenario I with h(T , A; τπ ) = −1+ T −1.2A and λ1 = λ2 = 0,
i.e., under MAR assumption (verification rate roughly equal to 0.57);

(ii) generated as in scenario I, but models for the verification and disease processes
used in the fitting procedure are misspecified, because the estimated verification
model uses as predictors T 1/3 and log |A| instead of T and A, respectively, and
the estimated disease model uses A1/3 instead of A.
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In both (i) and (ii), the true VUS is 0.791. We consider three different values of sample
size, i.e., 250, 500 and 1500. The number of replications in each simulation experiment
is set to 1000.

Simulation results are given in Tables 4 and 5, for the case (i), and in Tables 6 and 7,
for the case (ii). As expected, in case (i) results show some bias of the proposed VUS
estimators when compared to the SPE estimator which is properly used here. However,
the bias decreases when the sample size increases. In case (ii), all estimators appear to
be biased, even when the sample size is large. Moreover, although in the considered
case the bias seems to stay on acceptable levels, we expect that, given the nature of the
estimators, it could be even dramatically high with other kinds of misspecification.
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